Labiality in Trique, and the categorical nature of gradience and variability

Daniel Silverman

Department of Linguistics, and Beckman Institute University of Illinois
Institute for Advanced Studies in the Humanities, University of Edinburgh dan@uiuc.edu

INTRODUCTORY PROPOSALS

- Gradience and variability are fully relevant to phonology.
- In combination, gradience and can influence the direction of sound changes.
- The target of language acquisition is the variability itself.
- Psychoacoustic experimental findings may be viewed as supporting these hypotheses.

BACKGROUND

GRADIENCE

- The categorical nature of an autonomous generative phonology derives from lexical combinations of distinctive features (a).
- Allophonic variation, too, is viewed as a consequence of adding, subtracting or changing the value(s) of category-defining distinctive features from lexical representations (b).
- "Low level," gradient, interpolative, and coarticulatory effects are viewed as the product of (rules of) "phonetic transcription" (Chomsky and Halle 1968), the rationale being that gradient realizations constitute interpolations between (categorical) phonological targets. These are not regarded as part of the categorical phonology; they are often regarded as part of a "generative phonetics" (Pierrehumbert 1980, Cohn 1990, Keating 1990, Zsiga 1993, Kingston and Diehl 1994, etc.) (c).

- Example: nasality on English vowels (Cohn 1990):
(a) /bid/

(b) [0nas]

[0nas]

(c) [fully oral] [increasingly nasal]

[biid]
"beat"
[biinn]
"bean"
[decreasingly nasal]

[niid]
"need"
[fully nasal]

[miiin]
"mean"
- An alternative conception:
(a) The categorical nature of phonology derives from the stability of morpheme meaning across allomorphic contexts.
(b) Gradient phonetic exponence is not a diagnostic for a phonetics-phonology distinction, but is a hallmark of categoricity.

VARIABILITY

- Probability matching in lower animals (Gallistel 1990, Labov 1994)

- Gallistel (1990:352ff.): Rats in a T-Maze were rewarded with food 75% of the time at one end, 25% of the time at the other. When provided with feedback, rats matched the probability of rewardrunning to the one end 75% of the time, the other end 25% of the time-despite the fact that they would receive more rewards if they ran to the one end 100% of the time (62.5\%).
- The "irrationality" of such behavior is only apparent; from a broader evolutionary point of view, in the context of natural, populated settings, the observed behavior is actually beneficial.
- Humans engage in similarly "irrational" behavior in terms of speech production: learners come to largely reproduce the nuances of variation they perceive their elders and peers engaging in, despite the fact that certain of these variants are more successful at keeping contrastive elements distinct.
- For example, young English-learning children initially produce their stops unimodally, with short-lag VOT regardless of category.
Through three years of age, a bimodal distribution begins to develop, but still, voicing lead is extremely infrequent, though less so for labials. Even up to six years of age, the lenis category involves fewer
tokens with voicing lead than adults'. Finally learners come to match the nuanced variability of their elders (Preston and Yeni-Komshian 1967, Preston, Yeni-Komshian, and Stark 1967, Zlatin and Koenigsknecht 1976), even though fully voiced variants are more distinct from voiceless aspirates than are the more commonly produced devoiced variants.
- Labov (1994:583ff.), "It is not a hypothesis that children do probability matching [during language learning-D.S.]. It is simply a description of the observed facts..."
- Nonetheless, sound changes may slowly progress due to phonetic and/or functional factors, which influence the perception of the speech signal, consequently affecting the variability over which probabilities are matched.

INTERIM CONCLUSION

- The facts of probability matching would seem to offer support for this alternative approach to phonological categorization, as learners betray a nuanced mastery of the variability they perceive their elders to engage in, which is undeniably part of their phonological knowledge.
- Given the facts of probability matching, the target/interpolation diagnostic for phonological categorization would seem rather arbitrary: phonological categories change when semantic categories change.

EXEMPLIFICATION

- Labiality in Trique (Hollenbach 1977). When high labial vocalism precedes a velar, it always follows the velar as well, in the form of labialization; it does not similarly flank alveolars (labial consonants are extremely rare).
- [nukwah] strong
[dugwah] to twist
[3ugwa] to be twisted
[duqwane] to bathe (someone)
[rugwah] hearth stones
[dukwa] possessed house
[zugwi] (name)
[dugwe] to weep
[rugwi] peach
[dugwi] together with, companion [guni] to hear
- Longacre (1957):

Proto-Trique:

uga	([ugwa])	*uda	$($ (*[udwa])
ugi	([ugwi])	*udi	$($ (*udwi])
uge	([ugwe])	*ude	(*[udwe])

Modern Trique: [ugwa] (*[uga]) [uda] (*[udwa]) [ugwi] (*[ugi]) [udi] (*[udwi]) [ugwe] (*[uge]) [uda] (*[udwe])

- Trique trans-velar harmony may be historically rooted in the greater likelihood of coarticulation here, since such coarticulation serves to enhance the acoustic distinction between the velar and alveolar places of articulation; trans-alveolar harmony cannot be similarly motivated, since superimposed labiality would serve to diminish the velaralveolar acoustic distinction.

- F2 loci/transitions at stop release:
[uga]: $\quad 1500 \mathrm{~Hz}$
[ugwa]: 900 Hz
[uda]: 1800 Hz
[udwa]: 1000 Hz
[ugwa] and [uda] are maximally distinct
The cross-category presence or absence of labiality renders forms maximally similar.
- Articulatorily, labiality spreading is equally likely through both alveolars and velars; but by considering the functional benefit of spreading through velarity, and the counter-functionality of spreading through alveolarity, we might motivate the sound change.

protoform:	*uda									
current form:	[ugwa]									
F2 (Hz)	900	1000	1100	1200	1300	1400	1500	1600	1700	1800

FORCES AT WORK

- There is inherent variability in speech production, thus [uga...ug ${ }^{\mathrm{W}}$ a...ugwa], [uda...ud ${ }^{\mathrm{w}}$ a...udwa] are among the possible variants.
- However, [ugwa] variants render the u-velar-V sequences more distinct from their u-alveolar-V counterparts; [udwa] variants render u -alveolar- V variants less distinct from their u -velar- V counterparts.
- Consequently, listeners are more likely to perceive [ugwa] and [uda] unambiguously; hence they are more likely to produce [ugwa] and [uda] in their own speech, as a consequence of probability matching.
- Ambiguous tokens will sometimes be impossible to categorize, and hence will not be added to the pool of tokens over which probabilities are calculated.
- That is, the variability engaged in by elders will be largely matched by learners. But nonetheless, due to the greater likelihood of unambiguous perception of certain variants over others, learners' calculated probabilities may differ slightly from their elders', in that the variants which contrast more sharply with oppositions will more often be perceived correctly, hence, in turn, be more likely produced.

Conceivable diachronic scenario:

[uga.........ugwa......ugwa]	
\downarrow	\downarrow
less distinct	more distinct
from [$\mathrm{ud}^{(\mathrm{w})} \mathrm{a}$]	from [ud ${ }^{(w)}$
\downarrow	\downarrow
less like	more likely
perceived	perceiv
unambigously	unambigously
\downarrow	\downarrow
\therefore gradual move towards	

[uda...........ud ${ }^{\text {w }}$ a.........udwa]	
\downarrow	\downarrow
more distinct from [ug ${ }^{(\mathrm{w})} \mathrm{a}$]	less distinct from [ug $\left.{ }^{(\mathrm{w})} \mathrm{a}\right]$
\downarrow	\downarrow
more likely perceived unambigously	less likely perceived unambigously
\downarrow	\downarrow
more likely produced	less likely prodcued
\therefore stability of [uda]	

EXPERIMENT

- A laboratory condition may serve to recapitulate elements of the hypothesized historical scenario in "sped up" form, with the introduction of varying amplitudes of white noise into the speech signal, and having listeners report on their perception.

SUBJECTS/DESIGN

- 10 University of Illinois graduate linguistics students; all native English speakers.
- Sound files consisting of four relevant phonetic sequences were digitally recorded in the Department of Linguistics' phonetics lab at a sampling rate of $22,050 \mathrm{~Hz}$: [uga], [ugwa], [uda], [udwa]. Closure durations: [uga]: 40 msec , [ugwa]: 54 msec , [uda]: 50 msec , [udwa]: 51 msec .
- Each file was also overlaid with four levels of white noise, for a total of five levels.

FFT/LPC at randomly chosen window during noise

- Using PsyScope, subjects listened with headphones to 1000 trials-50 of each of the 20 sound files-in randomly generated blocks of 100, with a 2 second inter-trial interval, and untimed rests between blocks. Using the keyboard, Ss reported which sound sequence they heard ([uga], [ugwa], [uda], or [udwa]). Ss were encouraged to guess if they were undecided.

Raw tally, all conditions

0 noise condition				
perceived \rightarrow presented \downarrow	uda 503	udwa 428	uga 475	ugwa 473
uda0 461	455	1	5	0
udwa0 470	46	413	0	11
uga0 468	2	3	457	6
ugwa0 480	0	11	13	456

1 noise condition

perceived \rightarrow presented \downarrow	uda 500	udwa 428	uga 465	ugwa 492
uda1 478	456	2	20	0
udwa1 471	22	350	4	95
uga1 465	22	3	434	6
ugwa1 471	0	73	7	391

perceived \rightarrow presentedџ uda2 461	uda 541	udwa 525	uga 330	ugwa 342
udwa2 457	38	3	53	2
uga2 465	100	274	23	122
ugwa2 455	0	10	350	5
3 noise condition				
	uda 759	udwa 436	uga 275	ugwa 378
udda3 473	349	35	71	8
udwa3 461	163	178	45	75
uga3 451	232	33	156	30
ugwa3 473	15	190	3	265

4 noise condition				
perceived \rightarrow presented \downarrow	uda 814	udwa 316	uga 342	ugwa 422
uda4 466	323	29	90	24
udwa4 477	136	124	78	139
uga4 469	252	50	108	59
ugwa4 472	103	103	66	200

Directional errors

perceived \rightarrow presented \downarrow	uda	udwa	uga	ugwa
uda	1208	40	144	10
udwa	223	802	72	292
uga	354	46	940	41
ugwa	15	501	14	869
total perceived:	1800	1389	1170	1212

- Lowest raw total of directional errors:
[ugwa] \rightarrow [uda]
(15), [uga]
[uda] \rightarrow [ugwa] (10)
(14)

Highest raw total of directional errors:
[ugwa]
\rightarrow [udwa]
(501)
[uga]
\rightarrow [uda]
[udwa]
\rightarrow [ugwa]
(354)
[uda]
\rightarrow [uga]
(292)
(144)

Pooled errors

	uda	udwa	uga	ugwa
uda				
udwa	263			
uga	498	118		
ugwa	25	793	55	

- Highest raw total of pooled errors: [ugwa] - [udwa]
- Lowest raw total of pooled errors: [ugwa] - [uda]

DISCUSSION

- The ability to psychoacoustically discriminate is reflected in the sorts of contrasts that exist, or that are rare or absent, from linguistic sound systems.
- The operative assumption here is that noise introduced into the speech signal might serve to induce a "sped up" rate of misperception in certain contexts, and thus serve to reflect one origin of real-world sound change.
- The variability inherent in speech production may be the fodder for these sorts of sounds changes: the more distinct the variant from an acoustically similar contrastive value, the more likely the system will wend towards this variant.
- Questions arising regarding an autonomous generative phonology? The present scenario is consistent with the hypothesis that stability of morpheme meaning rather than supposed phonological targets are the decisive factor in determining phonological categories. Whether stable (virtually never) or gradient (virtually always), phonetic realizations seem to be categorized together as long as meaning remains stable, regardless of phonetic variability.
[uda.......ud ${ }^{\mathrm{w}}$ a.......udwa]

meaning x
[uga......ug ${ }^{\mathrm{w}}$ a.....ugwa]

\rightarrow
- The facts of probability matching may be viewed as supporting this approach, as learners betray a nuanced mastery of the variability they perceive their elders to engage in, which is undeniably part of their phonological knowledge. Indeed, the facts of probability matching are consistent with the hypothesis that categorical phonological
(phonetic) targets do not exist. Rather, the target of phonological acquisition seems to be variability itself.
- The exquisite articulatory control that speakers display in their productions is best evidenced by the fact that they are able to largely match the variability present in the ambient pattern. The probability matching itself, no doubt, betrays an extremely sophisticated statistical analytic ability on the part of learners. Moreover, their actual productions betray evidence that they are able to implement their calculated probabilities in their own speech.
- On this view, learners's articulatory talents are harnessed in service to copying or imitating, not modifying (improving upon or otherwise) the ambient speech pattern.
- These experimental findings do not bear directly on the issues of phonological categorization, gradience, or variability (no meanings were associated with the sound sequences, etc.). Nonetheless the findings may be seen as consistent with the sorts of diachronic scenarios that are likely, given the facts of probability matching.

> Thanks to Margaret Russell and Kyle Chambers for their technical and methodological assistance. Thanks also to "my loyal subjects," whose dirty looks I must now endure, since this was such an unpleasant experiment to participate in.

[^0]Preston, M.S., G. Yeni-Komshian, and R.E. Stark (1967) "Voicing in initial stop consonants produced by children in the prelinguistic period from different language communities," Annual Report, Neurocommunications Laboratory, Johns Hopkins University School of Medicine 2:305-323.
Zlatin, M.A., and R.A. Koenigsknecht (1976) "Development of the voicing contrast: a comparison of voice onset time in stop perception and production," Journal of Speech and Hearing Research 18:93-111.
Zsiga, E.C. (1993) Features, gestures, and the temporal aspects of phonological organization. PhD dissertation, Yale University.

[^0]: Chomsky, N, and M. Halle (1968) The sound pattern of English. New York, Harper and Row.
 Cohen J. (1960) A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 196:37-46.
 Cohn, A. (1990) Phonetic and phonological rules of nasalization. PhD dissertation, UCLA.
 Gallistel, R. (1990) The organization of learning. Cambridge MA, MIT Press.
 Hollenbach, B.E. (1977) Phonetic versus phonemic correspondence in two Trique dialects. In W.R. Merrifield, ed., Studies in Otomanguean phonology. SIL.
 Kingston, J., and R.L. Diehl, (1994) "Phonetic knowledge," Language, 70:419-454.
 Labov W. (1994) Principles of linguistic change, internal factors. Oxford, Blackwell.
 Longacre, R.E. (1957) Proto-Mixtecan. IJAL 23.4.III.
 Pierrehumbert, J.B. (1980) The phonology and phonetics of English intonation. PhD Dissertation, MIT.
 Preston, M.S., and G. Yeni-Komshian (1967) "Studies on the development of stop consonants produced during the second year of life," Annual Report, Neurocommunications Laboratory, Johns Hopkins University School of Medicine 3:211-222.

