Alveolar stops in American English, and the nature of allophony

1.

Alternation				
Ľ	<u>لا</u>			
Neutralization ↓	Allophony ↓			
"True" Neutralization: merger towards a value that is otherwise contrastive in that specified position, e.g. Korean syllable final [t] "Contextual" Neutralization: merger towards a value that is otherwise	"True" Allophony: contextual variant that is <i>not</i> otherwise present in the phone inventory, e.g. Spanish spirantization			
contrastive, but <i>not</i> in that specified position, e.g. Southern Min tone circle Near Neutralization: A contrast threatens to neutralize, e.g. German final de-voicing Phonemic Overlap: merger towards a non- contrastive value, e.g. American English tapping	"Contextual" Allophony: contextual variant that <i>is</i> otherwise present in the phone inventory, but only in other contexts, e.g. Southern Min tone circle			

- 2. <u>Question</u>: Are patterns of alternation merely random, or are there generalizations to be found from which predictions might be made regarding when an alternation should be allophonic versus neutralizing?
- 3. <u>Hypothesis</u>: Allophonic patterns may be a (diachronic) consequence of linguistic function: certain acoustic/auditory cues which convey contrasts are enhanced/modified in contexts where contrasts are otherwise vulnerable to neutralization.
- 4. <u>A major function of phonology</u>: Achieve effective communication
- 5. **Contrast maintenance**—an *abstract* functional constraint: "Contrastive values (whatever their origin and whatever their mental status) are maintained" (see also Martinet 1952, Kiparsky 1972, Liljencrantz and Lindblom 1972, Silverman 1997)
- 6. <u>Hypothesis</u>: Neutralizing patterns may be a (diachronic) consequence of energy constraints: neutralization may take place when insufficient energy is present in the relevant context of the speech signal (from the speaker) for contrasts to be effectively communicated (to the listener) (Jun 1995, Steriade 1995).
- 7. <u>A major constraint on effective communication</u>: Availability of energy

8. **Energy availability**—a *physical* functional constraint: "Energy for the speech signal is limited in its availability" (see also Martinet 1952, Lindblom 1983, Jun 1995, Steriade 1995, Kirchner, in prep.)

9.

Allophony may be a consequence of contrast maintenance
(given sufficient energy availability)
—an abstract functional constraint
Neutralization may be a consequence of insufficient energy availability
—a <i>physical</i> functional constraint
Unmarked values are typically natural values; marked values are
typically less natural. These distinctions in naturalness/markedness
carry over to contextually-conditioned alternations.
There is a necessary interdependence between abstraction and
physicality in order to properly account for patterns of alternation

10. English alveolar stop contrasts possess several context-dependent manifestations. "Fortis" refers to the so-called voiceless stop ("/t/"). "Lenis" refers to the so-called voiced stop ("/d/").

_ 11.						
		lenis:		fortis:		
	form:	exa	nple:	form:	exa	mple:
(a) word-initially:	t	'tak	dock	t ^h	't ^h ap	top
(b) syllable- and word-finally:	rt	'naːt7	nod	t	'nat7	knot
	rď	'naːd]		~t¬	'naªt⁻	
		-		?	'na?	
(c) intervocalic stressed-	d	ə'dapt	adopt	t ^h	ə't ^h ap	atop
syllable-initially:						
(d) word-internal unstressed	ľ	arti	odder	ſ	'ari	otter
syllable-initially:	ſ	ari	(neutralized)			
(e) preceding s:	form: t	example	e: stap [¬] ; s	stop (non	-contrastiv	ve)

12. Contrary to standard labeling conventions, it is actually the lenis ("voiced"; [voice]) stop which is unmarked; the fortis stop ("voiceless"; [-voice], or Øvoice) is marked. The patterning of English so-called [-voice] or Øvoice stop is not parallel to the cross-linguistic norm for stops: its presence implies the presence of the "unmarked" norm, i.e., the so-called [voice] stop.

13.						
		lenis:			fortis:	
	form:	exa	nple:	form:	exa	mple:
(a) word-initially:	t	'tak	dock	t ^h	't ^h ap	top

- 14. Natural laryngeal setting for word-initial stops is near-zero VOT, as sufficient transglottal pressure drop is not present to naturally implement vocal fold vibration until oral release (Westbury and Keating 1986, pace Rothenburg 1968).
- 15. Gestural model (Browman and Goldstein 1986, 1989), schematic:

Lenis stop:		
tongue tip:	up	down
tongue body:		low
	r	
vocal folds:	spread	approximated
"percept":	to	1

16. If there is a laryngeal contrast among stops, what is its likely manifestation? A laryngeal contrast here may be effected by pushing toward late VOT (aspiration) (e.g. English).

Fortis stop:				
tongue tip:	up	down		
tongue body:	low			
vocal folds:	spread	approximated		
"percept":	t	ha		

17. Or, a laryngeal contrast here may be effected by pushing toward early VOT (e.g. Spanish, Dutch, Japanese).

Voiced stop:		
tongue tip:	up	down
tongue body:		low
vocal folds:	spread	approximated
"percept":	d	a

18. Or there may be prenasalization (e.g., Chinantec):

Prenasalized stop:				
tongue tip:	up		down	
tongue body:			low	
velum:	down		up	
vocal folds:			approximated	
"percept":	n	da		

19. Or there may be implosion (e.g. Vietnamese):

vocal folds/larynx:	tense/lowered	raised, approximated
tongue body:		low
Imploded stop: tongue tip:	up	down

20. These environment-specific manifestations maintain the contrast by accommodating to particular articulatorily natural constraints; by shifting the natural laryngeal posture (for the unmarked pattern) to a somewhat less natural laryngeal posture (for the marked pattern); either extend vocal fold spreading beyond release (aspiration), or extend voicing to precede release (prevoicing, prenasalization, implosion). The observed contrast can be motivated by comparing the natural, unmarked value ([t]) to the unnatural, marked value ([t^h], [d], [ⁿd], or [d]).

	(a) word-initially:
Lenis/natural	t
	1Ĵ
Fortis/less natural	t ^h

- 21. Nothing explanatory emerges by generating the respective values from some hypothesized lexical representations, by *changing* (not temporally shifting) particular hypothesized distinctive feature values that cannot be formally related to one another:
- 22. Distinctive feature theory: [voice] $\rightarrow \emptyset$ voice, \emptyset voice \rightarrow [spread]

23.						
		lenis:		fortis:		
	form: example:			form:	example:	
(b) syllable- and word-finally:	rt	'nart	nod	t	'nat7	knot
-	rď	'naːd]		$\tilde{z}t$	'naªt7	
	5	9		?	'na?	

24. Lenis stop:

s stop:		
tongue tip:	down	up
tongue body:	low	
vocal folds:	approximated	spread
"percept":	aï	ģ
	-or-	
tongue tip:	down	up
tongue body:	low	
vocal folds:	approximated	spread
"percept":	aı	t

- 25. Word-final and syllable-final stops are naturally voiceless. The natural laryngeal posture for syllable-and word-final stops is rather sudden dissipation of vibration, as the sealed oral cavity quickly fills to capacity, resulting in a rapid equalization of subglottal and supraglottal pressure (Westbury and Keating 1986).
- 26. For the fortis stop, concomitant vowel shortening and/or glottal constriction may be implemented to enhance the contrast.

Fortis stop:		
tongue tip:	down	up
		1
tongue body:	low	
vocal folds:	approximated	constricted
"percept":	a	t٦
	-or-	

	NELS 28	
	University of Toronto	
	10:00 AM, Saturday, October 25, 1997	
	Daniel Silverman	
	daniel@cogsci.uiuc.edu	
	University of Illinois at Urbana-Champaign	
tongue tin.	down	un
tongue up.	down	up
tongue body:	low	
vocal folds:	approximated	constricted
"percept":	a	۵+٦
r · · · r · ·	ŭ	~ l

-or-

The glottal constriction can take the place of the oral occlusion. This configuration mimics the acoustic properties of a voiceless alveolar stop (silence with far less pronounced formant transitions than labials or velars).

tongue tip:	down	
tongue body:	low	
vocal folds:	approximated	constricted
"percept":	a	?

27. Again, this environment-specific manifestation maintains the contrast by accommodating to particular articulatorily natural constraints. The natural (unmarked) pattern involves voicelessness, and so the marked value normally involves a moderately less natural laryngeal posture.

	(b)
	syllable- and word-finally:
Lenis/natural	ıt/ıd
	$\hat{\mathbf{Q}}$
Fortis/less natural	t/ ~t/?

28. Distinctive feature theory: [voice] $\rightarrow \emptyset$ voice, \emptyset voice \rightarrow [constricted]

29.

	lenis:				fortis:	
	form: example: f		form:	example:		
(c) intervocalic stressed- syllable-initially:	d	ə'dapt	adapt	t ^h	ə't ^h ap	atop

30. An "embarrassment of riches": Stressed syllables, with their increased energy, duration, and articulatory force (de Jong 1991) allow for maximally distinct values to be readily implemented.

33.

	(c) stressed-syllable-initially:
Lenis/natural	d
	$\hat{\mathbf{Q}}$
Fortis/less natural	t ^h

34. Distinctive feature theory: \emptyset voice \rightarrow [spread]

^{35.} In sharp contrast, intervocalically before a *stressless* syllable is a poor context for laryngeal contrasts to be maintained (but cf. place features). Voicing is natural intervocalically (Westbury and Keating 1986), as the oral closure is typically short enough so that transglottal flow does not markedly dissipate. Moreover, stresslessness corresponds to a reduction of duration, energy and articulatory force, which establishes a natural environment for (obstruent) stops to turn into (sonorant) taps (cf. English vowel reduction; de Jong 1991).

2	6	
3	υ	•

	lenis:				fortis:	
	form:	form: example:		form:	example:	
(d) word-internal unstressed	ľ	ruru	odder	ſ	'ari	otter
syllable-initially:	ſ	run	(neutralized)			

37. Not surprisingly, in such energy-deprived contexts, the contrast only barely survives (in vowel length); in many dialects, it is lost.

40.

	(d) word-internal unstressed syllable initially:
Lenis/natural	(I)f
	\bigcirc
Fortis/less natural	1

41. Distinctive feature theory: [voice] \rightarrow [+sonorant], \emptyset voice \rightarrow [+sonorant]

42.

		lenis:	fortis:		
	form: example:		form:	example:	
(e) preceding s:	form: t	example: stap; s	stop (non	-contrastive)	

43. Due to the laryngeal articulatory demands of the voiceless fricative (sustained laryngeal spreading), energy availability becomes the overriding factor here.

44. No contrast:				
tongue tip:	close	up	down	
tongue body:	low			
vocal folds:	spread approximated			
"percept":	S	to	1	

45.

	(e) preceding s:
(no contrast)	t

46. English allophonic chain shift:

(a) word- initially:		(b) syllable- and word-finally:		(c) intervocalic stressed- syllable- initially:		(d) word-internal unstressed syllable initially:		(e) preceding s:
t	\Leftrightarrow	rt∕rď	\Leftrightarrow	d	\mathfrak{A}			
(natural)		(natural)		(natural)				
$\hat{\mathbf{U}}$		$\hat{\mathbf{v}}$		$\hat{\mathbf{v}}$		1(I)	\Leftrightarrow	t
t ^h	¢	t"/ ~t"/?	Û	t ^h	Y			
(less natural)		(less natural)		(less natural)				
Contrast		Contrast		Contrast		Creeping		Energy
maintenance		maintenance		maintenance		energy		availability
						availability		

*	(ː)ð/(ː)z		t
	(less natural)		(natural)
_	Û		1Ĵ
	ſ	*	t ^h
	(natural)		(less natural)

47. In (d), alternation with spirants would provide no functional gain, as ð and z are contrastive in these contexts, e.g. 'lather' (cf. 'ladder'), 'reason' (cf. 'heathen'). Moreover, this contextual manifestation of the contrast would involve the unmarked, or natural lenis stop being realized in a marked fashion (a spirant), while the marked, unnatural fortis stop would be implemented naturally, as a tap. This sort of contextual markedness reversal is thus correctly predicted unattested.

48. Some other systems:

	#:		V:
	Voiceless stops:	ţ	Voiced stops:
peðe	'foot'		u beðe 'the foot'
tengu	'I have'		u dengu 'I have it'
sak:u	'bag'		u zak:u 'the bag'
	$\hat{\mathbf{Q}}$	ţ	ţ,
	Voiced stops:		Voiced fricatives:
bokıa	'mouth'		a βok:a 'the mouth'
dente	'tooth'		u ðente 'the tooth'
gola	'throat'		diyola 'of throat'

Corsican (Dinnsen and Eckman 1977); true allophony:

- 49. β , δ , γ *exclusively* alternate with b, d, g; they do not contrast with b, d, g. Spirantization is thus non-neutralizing.
- 50. Spirantization maintains the contrast, again, by shifting to a less natural (more marked) value: fricatives are marked (and presumably involve more effort to properly implement) in comparison to stops.

51.

Voiceless stops (p,t,k):	Truly allophonic (word-initially only)
Voiced stops (b,d,g):	Contextually allophonic (word-initially opposed to voiceless
	stops, and intervocalically opposed to voiced spirants)
Voiced spirants (β , δ , γ):	Truly allophonic (intervocalically only)

52. Southern Min "free" syllable tone circle (Chen 1987); contextual allophony/contextual neutralization:

#		~#
24	¢	22
€		$\hat{\mathbf{v}}$
22	ţ	21
€		ţ
21	¢	53
¢		\hat{v}
53	¢	44
$\hat{\mathbf{v}}$		$\hat{\mathbb{Q}}$
44	\Leftrightarrow	22

53. Most sandhi forms are contextually allophonic; non-neutralizing. Only 22 is a (contextually) neutralized value (deriving from both 24 and 44) in the sandhi environment (non-final position).

54. Summary and conclusion:

Allophony may be a consequence of contrast maintenance
(given sufficient energy availability)
—an <i>abstract</i> functional constraint
Neutralization may be a consequence of insufficient energy availability
—a physical functional constraint
Unmarked values are typically natural values; marked values are
typically less natural. These distinctions in naturalness/markedness
carry over to contextually-conditioned alternations.
There is a necessary interdependence between abstraction and
physicality in order to properly account for patterns of alternation

Sources:

- Browman, C.P., and L. Goldstein (1986) "Towards an Articulatory Phonology," Phonology Yearbook 3:219-252.
- Browman, C.P., and L. Goldstein (1989) "Articulatory Gestures as Phonological Units," Phonology 6:201-251.
- Chen, M. (1987) "The syntax of Xiamen tone sandhi," Phonology Yearbook 4:109-149.
- De Jong, K. (1991) The oral articulation of English stress accent. Ph.D. dissertation, Ohio State University.
- Dinnsen, D.A., and F.R. Eckman (1977) "Some substantive universals in atomic phonology," Lingua 45:1-14.
- Flemming, E. (1995) Auditory representations in phonology. Ph.D. dissertation, University of California at Los Angeles.
- Houlihan, K., and G.K. Iverson (1979) "Functionally constrained phonology," in D.A. Dinnsen, ed., Current approaches to phonological theory. Indiana University Press, Bloomington, 50-73.
- Jun, J. (1995) A constraint-based analysis of place assimilation typology. Ph.D. dissertation, University of California at Los Angeles. Also, UCLA dissertations in linguistics series, #2.
- Kirchner, R. (in prep.) (Untitled UCLA dissertation).
- Liljencrants, J., and Lindblom, B. (1972) "Numerical Simulation of Vowel Quality Systems: The Role of Perceptual Contrast," Language 48.4:839-862.
- Lindblom, Björn, (1983) "Economy of speech gestures," in P. MacNeilage, ed., The production of speech. New York, Springer-Verlag, 217-245.
- Martinet, A. (1952) "function, structure, and sound change," Word 8.2:1-32.
- Rothenberg, M. (1968) The Breath-Stream Dynamics of Simple Released-Plosive Production. Basel : S. Karger.
- Silverman, D. (1997) "Tone sandhi in Comaltepec Chinantec," Language 73.3:473-492.
- Steriade, D. (1995) "Neutralization and the expression of contrast," Manuscript, UCLA.
- Westbury, J.R. and P.A. Keating (1986) "On the naturalness of stop consonant voicing," Journal of linguistics 22:145-166.