

Abstract

Neutralization in Korean involves a large number of oppositions, and affects a significant portion of the lexicon. Nonetheless, it induces remarkably little homophony. I propose herein that these highly divergent facts may be related: the neutralization of so many values in Korean is tolerated exactly because it has a negligible effect on the amount of derived homophony. Understanding how this came to pass requires an investigation of the history of Korean, especially in the context of its extensive contact with Middle Chinese. The present findings suggest a reconsideration of the role that 'functional load' (Martinet 1952, Hockett 1967) plays in patterns of sound change.

...There is no doubt that in some way or other, linguistic systems respond to change in ways that maintain meaning-more or less -William Labov (1994:569)

- Silverman (2006): a primary origin of allophonic (i.e. non-neutralizing) alternation is selectional pressures acting on sound systems: perceptually unambiguous speech tokens are more likely perceived with the meaning intended by speakers, and so are more likely to be reproduced as these listeners become speakers (see also Wedel 2006).
- The obvious question: whence neutralization and merger?
- According to Martinet (1952), the tendency toward merger of an opposition is favored to the extent that

1) The values in opposition are phonetically similar
2) The number of minimal morpheme pairs that the opposition is responsible for is low
3) The number of minimal pairs within a correlated opposition is low (or the opposition is uncorrelated; "correlated": a series that is opposed to another by one feature (Trubetskoy 1939))
4) The minimal pairs belong to different syntactic categories
5) The token frequency of one or both members of the minimal pairs is low
6) The presence of additional morphological markers serves a disambiguating function

- If sounds are to merge, the result-across the lexicon in use-should not yield a significant increase in the amount of communicative confusion.
- The proposal: neutralizing alternations are more likely arise in a language if they do not significantly increase the level of homophony: derived homophony is not excessive.
- The wording of this hypothesis is intentionally vague, because I do not pretend to be able to zero in on a numerical upper limit of derived homophony

Neutralization in Korean

- In Korean, many patterns of neutralization are tolerated and continue to expand because derived homophony is remarkably meager.
- Source for this study: The Sejong Project, a database of 1.5 million words gathered from written sources (http://sejong.or.kr/).
- Seven routes to $\mathbf{C}+\mathbf{C} / \mathbf{C} \#$ neutralization (Martin 1992):
(A) Aplosivization
(B) Nasal lateralization
(C) Liquid nasalization
(D) Nasal assimilation
(E) Coronal assibilation
(F) Cluster reinforcement
(G)Coronal assimilation (variable)
(1) Korean intervocalic values (shaded cells are variably implemented; adapted from Martin 1992)

	p	$\mathrm{p}^{\text {b }}$	p'		$\mathrm{t}^{\text {h }}$	t'													
b	p'	$\mathrm{p}^{\text {b }}$	p'	pt'	pt	pt	ps	p	pt ${ }^{\text {' }}$	pt ${ }^{\text {b }}$	pt5'	k	$\mathrm{k}^{\text {b }}$	k^{\prime}	m	mn	mn		
p^{b}	p^{\prime}	p	p'	pt'	$\mathrm{pt}^{\text {b }}$	pt'						k	k^{1}	k^{\prime}				$\mathrm{p}^{\text {b }}$	p^{b}
d	p'	p	p	t^{\prime}	$\mathrm{t}^{\text {b }}$	t^{\prime}		s'											
$\mathrm{t}^{\text {b }}$	p			t'		t													
s	p		p	t^{\prime}		t													
s'	p	p	p	t^{\prime}		t^{\prime}													
d3	p		p	t^{\prime}	$\mathrm{t}^{\text {b }}$	t^{\prime}													
t 5	p	p	p	t'	$\mathrm{t}^{\text {b }}$	t'	s'	s'						k				$\mathrm{t}^{\text {b }}$	
g	kp	$\mathrm{kp}^{\mathbf{h}}$	kp'	kt'	kt ${ }^{\text {h }}$	kt'	ks'	ks'	kt ${ }^{\prime}$			k		${ }^{\prime}$				$\mathrm{k}^{\text {h }}$	
k^{k}	kp			kt		k	ks					${ }^{\prime}$		k				'	$\mathrm{k}^{\text {b }}$
k	kp		kp'	kt		k						k^{\prime}		k^{\prime}				$\mathrm{k}^{\text {b }}$	k'
m															m:				
n			mp	n		nt		ns'				,	nk ${ }^{\text {b }}$	\k'	ms			nh	
η	jb		7p'	'	1	d	,	J	nt ${ }^{\prime}$			nk'	nk ${ }^{\text {b }}$,	nm	n			リ
1	lb	$1 p^{\text {b }}$	1p'	ld	$1 \mathbf{t}^{\text {b }}$	lt'	1s'	1s'	lt ${ }^{\prime}$	lt ${ }^{\text {b }}$	ltf'	1 g	$\mathbf{l k}^{\text {b }}$	1k'	1 m	$1:$	$1:$,	1
\varnothing	b	$\mathrm{p}^{\text {h }}$	${ }^{\prime}$	d	$t^{\text {b }}$	t'	s'	s'	d3		t,		$\mathrm{k}^{\text {b }}$	k'	m			\varnothing	\varnothing

- 304 possible combinations reduce to 75 values
(A) Aplosivization induces very little homophony
- Laryngeal neutralization is quite prevalent among non-prevocalic stops, and virtually unattested among prevocalic ones (Lombardi 1991, Steriade 1995, 1997, 2000). This position of neutralization typically involves the loss of stop release, or aplosivization.
- For aerodynamic and auditory reasons, stop releases are the optimal location for laryngeally-based cues (Kingston 1985, 1990, Bladon 1986, Silverman 1995, 1996, Wright 2004).

UCSC
17 April 2009
Dan Silverman

- Non-prevocalically, the perceptual distinction among contrastive laryngeal states may be extinguished completely. This is laryngeal neutralization due to aplosivization.
(2) Alternation with aplosives (shaded values don't alternate; they never appear morphemefinally.)

	Lexically prevocalic			
	Plain	Voiced	Aspirated	Tensed
Labial:	\mathbf{p}	\mathbf{b}	$\mathbf{p}^{\mathbf{h}}$	\mathbf{p}^{\prime}
Coronal:	\mathbf{t}	\mathbf{d}	$\mathbf{t}^{\mathbf{h}}$	\mathbf{t}^{\prime}
	$\mathbf{t} \mathbf{f}$	$\mathbf{d} 3$	$\mathbf{t f}^{\mathbf{h}}$	$\mathbf{t} \mathbf{f}^{\prime}$
	\mathbf{s}		$\mathbf{(h)}$	\mathbf{s}^{\prime}
Dorsal:	\mathbf{k}	\mathbf{g}	$\mathbf{k}^{\mathbf{h}}$	\mathbf{k}^{\prime}

(3) Examples of neutralization due to aplosivization (from Jun 2007)

	Plosive:	
	(a) Locative (-e)	(b) Nominative (-i)
Labial:	pab-e	pab-i
	ip ${ }^{\text {b }}$-e	$\mathrm{ip}^{\text {h }}$-i
Coronal:	os-e	of-i
	pat ${ }^{\text {b }}$-e	pat ${ }^{\text {b }}$-i
	nad3-e	nad3-i
	pitf ${ }^{\text {h }}$-e	pit ${ }^{\text {b }}$-i
Dorsal:	kug-e	kug-i
	puək ${ }^{\text {b }}$-e	puek ${ }^{\text {b }}$ -
	pak'-e	pak'-i

Aplosive:	Gloss:
(c) Isolation Form	
pap ${ }^{1}$	rice
ip ${ }^{\text {² }}$	leaf
ot ${ }^{7}$	clothes
pat'	field
nat ${ }^{\prime}$	day
pit ${ }^{\text {' }}$	light
kuk'	soup
puak ${ }^{\text {² }}$	kitchen
pak ${ }^{\text {² }}$	outside

- The Sejong Project corpus lists 34,803 different nouns.
- 10,138 nouns possess aplosive alternants
- 5,299 are word-final
- 4,839 are word-internal
(4) Distribution of word-final (\#) and morpheme-final (+) obstruents/h for 10,138 nouns.

Labials		Coronals		Dorsals	
	Number of words		Number of words		Number of words
b\#	1,154	d\#	3	g\#	3,522
b+	762	d+	0	g+	3,272
$\mathrm{p}^{\mathrm{h}} \#$	189	$\mathrm{t}^{\text {th}}$	63	$\mathrm{k}^{\text {b }}$	12
$\mathrm{p}^{\text {h }}+$	33	$t^{\text {th }}$	60	$\mathbf{k}^{\mathbf{h}}+$	1
p'\#	0	t'\#	0	k'\#	15
p'+	0	$t^{\prime}+$	0	k'+	8
		d3\#	10		
		d3+	41		
		t ${ }^{\text {b }}$	74		
		tf ${ }^{\text {b }}$ +	43		
		tf'\#	0		
		tf'+	0		
		s\#	257		
		S+	612		
		(h)\#	0		
		(h)+	5		
		s'\#	0		
		s'+	2		
p ${ }^{\text {\# }}$	1,343	t ${ }^{\text {² }}$	407	k ${ }^{\text {\# }}$	3,549
$\mathrm{p}^{7}+$	795	$\mathrm{t}^{\mathbf{+}}+$	763	$\mathbf{k}^{\mathbf{+}}$	3,281
Total:	2,138	Total:	1,170	Total:	6,830
5299 nouns possess word-final neutralized aplosive alternants; 4839 nouns possess neutralized word-internal aplosive alternants; 10,138 out of 34,803 nouns; 29% of all nouns					

- 19.2% consists of \mathbf{g}-final elements, and there are only 35 words with which these words might alternate.
- 6% are b-final, which potentially neutralize with only 72 other forms.
(5) Examples of homophony due to aplosivization

nad3-i	day (subject)	nat'-k'wa	day and
nat ${ }^{\text {b }}$-i	face (subject)	nat'-k'wa	face and
naf-i	sickle (subject)	nat'-k'wa	sickle and

- The Sejong Project corpus tallies inflected words across the lexicon in use, and not simply bare roots.
- It is not the case that all potential derived homophonic roots are documented here.

UCSC
17 April 2009
Dan Silverman
(6) Exhaustive list of homophones due to aplosivization (throughout, shaded sets are false positives due to spelling errors)

Set number	Homophonous words	Non-neutralized allomorphs	Word number	Hangul	Token count	Gloss
1	t $\int \Lambda \underline{t}{ }^{\prime}$	t \int Ad3	1	젖	44	breast/milk
		t \int AS	2	젓	5	salted fish
2	t $\int \Lambda$ tkarak ${ }^{\prime}$	t $\int \Lambda s$-ka-rag	3	젓가락	27	chopsticks
		t $\int \Lambda$ d3-ka-rag	4	젖가락	3	unknown
3	t ip 7	t ib	5	집	9	house
		t ip $^{\text {h }}$	6	짚	19	straw
4	t $\int 0 \mathrm{t}^{7}$	t5od3	7	좇	21	penis
		t $\mathrm{OOt}^{\text {b }}$	8	좇	2	unknown
5	ip ${ }^{7}$	ib	9	입	1,139	mouth
		$i p^{\text {b }}$	10	잎	158	leaf
6	kıt'	kıs	11	것	40,544	one
		k^t ${ }^{\text {b }}$	12	겉	120	surface
7	mat ${ }^{\text {' }}$	mas	13	맛	392	taste
		$\mathrm{mat}^{\text {b }}$	14	맡	3	nearby place
8	milt ${ }^{\prime} \mathrm{ip}{ }^{\prime}$	mil-t5ip	15	밀집	21	crowd
		mil-tfip ${ }^{\text {h }}$	16	밀짚	2	straw
9	nat ${ }^{\text {² }}$	nad3	17	낮	294	day
		nat ${ }^{\text {h }}$	18	낯	91	face
		nas	19	낫	25	sickle
10	od3irap	o-t i - rab	20	오지랍	4	unknown
		o-t fi -rap ${ }^{\text {h }}$	21	오지랖	3	front of outer garment
11	pak'	pag	22	박	581	gourd
		pak'	23	밖	1,568	exterior
12	pat ${ }^{\text {² }}$	pat ${ }^{\text {b }}$	24	밭	380	heritage
		pad	25	받	2	field
13	pit ${ }^{\text {² }}$	pit ${ }^{\text {h }}$	26	빛	726	light
		pid3	27	빚	128	debt
		pis	28	빗	6	comb
14	$\mathrm{p}^{\mathrm{j}} \underline{\mathrm{t}}^{\mathbf{T}}$		29	볕	32	sunshine
		$\mathrm{p}^{\mathbf{j}} \underline{\underline{\mathbf{s}}}$	30	볏	6	crest (of fowl)
15	seud3^t' ${ }^{\text {² }}$	s ε-u-t $\int \Lambda s$	31	새우젓	8	unknown
		se-u-t.tıd 3	32	새우젖	2	salted shrimp
16	sut' ${ }^{\text {² }}$	sutf ${ }^{\text {h }}$	33	숯	14	charcoal
		sut ${ }^{\text {h }}$	34	숱	7	hair density

17	tnt ${ }^{\text {' }}$	tıt $\int^{\text {h }}$	35	덫	31	trap
		tıs	36	덧	4	a short time
18	$t^{\text {he }}$ - ip^{7}	$t^{\text {he }}$ - $\mathrm{ip}^{\text {h }}$	37	테잎	2	tape
		$t^{\text {he }}$--ib	38	테입	9	unknown
19	t \int ipt' an	tfib-tan	39	집단	400	group
		t. ip^{h}-tan	40	짚단	12	sheaf of straw
20	nat ${ }^{\prime}{ }^{\prime} \mathrm{ak}^{\prime}$	nat ${ }^{\text {h }}$-t ' $^{\prime}$ ag	41	낯짝	5	face
		nat 5 -t ${ }^{\text {'ag }}$	42	낮짝	2	unknown
21	pitf'ulgi	pis-tJul-ki	43	빗줄기	16	sheets of rain
		pit ${ }^{\text {h}}$-tful-ki	44	빛줄기	2	rays of light
22	takt'al	tak'-tal	47	닦달	8	scolding
		tak-tal	48	닥달	3	unknown
	15 actual sets (7 due to spelling errors); 32 nouns out of 34,$803 ; 46,781$ tokens out of 1,234,323					

- Each set possesses at least one Native Korean noun. This is to be expected, because SinoKorean forms do not possess root-final release and/or laryngeal distinctions, and so are not subject to neutralizing aplosivization.
- The token frequency of one or more members of the homophonic sets is usually low: the mean token count among nouns is 35 , but eight of the 15 homophonic sets possess at least one member with a token count below ten.
- While there are 46,781 homophonous tokens, a full 40,544 are of one word (것) ("one"), while its homophone (겉) ("surface") has a token count of 120. If we exclude this one set-which, due to the high frequency of one word, and the low frequency of its homophone, is scarcely likely to induce confusion-then...
- ...Out of $1,234,323$ noun tokens there are 6,117 homophonous tokens due to aplosivization.
- This is a very low level of homophony.

Interim summary:

(i) Korean aplosivization induces the neutralization of a remarkably high number of oppositions: twelve values neutralize to three. 29% of the nouns are subject to neutralizing aplosivization.
(ii) Korean aplosivization induces the homophony of a remarkably low number of nouns: 15 sets of nouns are homophonous (32 nouns out of $34,803-<0.1 \% ; 6,117$ noun tokens out of $1,234,323$ tokens-<0.1\%).
(B) Nasal lateralization induces very little homophony
 entered the language about 400 years ago (Martin 1992: 52).

UCSC
17 April 2009
Dan Silverman
(7) Number of nouns subject to nasal lateralization neutralization

Sequence	Number of derived sequences	Homophonic sets
$\mathbf{l}:$	681 (from $\mathbf{n}+\mathbf{+}$)	10
	316 (from $\mathbf{1}+\mathbf{r})$	
	4 (from $\mathbf{1}+\mathbf{n})$	10
Totals:		1001
1001 nasal-nasal sequences in the set of 34,803 nouns		
10 homophonic sets		

(8) Homophonic sets due to nasal lateralization

Set number	Homophonous words	Non-neutralized allomorphs	Word number	Hangul	Token count	Gloss
1	t $\int^{\text {halala }}$	t ${ }^{\text {hal-ra }}$	1	찰라	5	unknown
		tf ${ }^{\text {hal-na }}$	2	찰나	22	a moment
2	hwalo	hwan-ro	3	환로	2	file
		hwal-ro	4	활로	11	bow
3	iliju	in-rju	5	인류	179	humanity
		il-rju	6	일류	32	peculiarity
4	ilsabulan	il-sa-pun-ran	7	일사분란	3	unknown
		il-sa-pul-ran	8	일사불란	7	being in perfect order
5	knılip ${ }^{\prime}$	kın-rib	9	건립	55	building
		kıl-rib	10	걸립	9	alms rounds
6	kwnly ${ }^{\text {a }}$ (kwan-rjan	11	권련	2	deep affection
		kwıl-rjın	12	궐련	10	cigarette
7	pula	pun-ri	15	분리	124	separation
		pul-ri	16	불리	7	handicap
8	puly ${ }^{\text {y }}$	pun-rjay	17	분량	61	quantity
		pul-rjan	18	불량	40	inferiority
9	salıim	san-rim	19	산림	35	woodland
		sal-rim	20	살림	179	lifestyle
10	Silıok'	Sin-rog	21	신록	3	fresh verdure
		fil-rog	22	실록	6	chronicle
11	sulic	sul-¢	23	술래	20	smell of liquor
		sul-ne	24	술내	4	tagger
12	juluak ${ }^{\prime}$	jın-rag	25	연락	220	connection
		jıl-rag	26	열락	2	joy
10 actual sets (2 due to spelling errors); 20 words; 1,001 tokens						

- There are ten homophonic sets. Two additional cases are false positives due to documented spelling errors.
- Eight of the actual sets possess at least one member with a token count under ten.
- Out of $1,234,323$ tokens there are 1,001 homophonous tokens due to nasal lateralization
- This is a very low level of homophony
(C) Liquid nasalization induces very little homophony
- p+r \rightarrow mn, k+r \rightarrow nn (Kim-Renaud 1975, Martin 1992, Davis \& Shin 1999).
- There is no phonetic motivation for the pattern. Rather, this alternation has the 'feel' of being analogically derived from nasal assimilation.
(9) Number of nouns subject to liquid nasalization neutralization

Sequence	Number of non- derived sequences	Number of derived sequences	Homophonic sets
$\mathbf{m}+\mathbf{n}$	74	45 (from $\mathbf{p}+\mathbf{r}$)	0
$\mathbf{y}+\mathbf{n}$	394	182 (from $\mathbf{k}+\mathbf{r}$)	6
Totals:	468	227	6
65 nasal-nasal sequences in the set of 34,803 nouns			
6 homophonic sets			

- In all, there are six homophonic sets of nouns, and two which may be the result of spelling errors in the corpus. Excluding these two sets, a total of 520 nouns tokens (out of $1,234,323$) are homophonous, which verges on 0% of the total.
(10) Homophonic sets due to liquid nasalization

Set number	Homophonous words	Non-neutralized allomorphs	Word number	Hangul	Token count	Gloss
1	t $\int \wedge$ nni	tfan-ri	1	정리	287	arrangement
		tf $\Lambda \mathrm{g}-\mathrm{ri}$	2	적리	3	dysentery
2	t $\int \wedge$ ¢nip ${ }^{\text {² }}$	$\mathrm{t} \int \wedge \mathrm{y}$-rib	3	정립	71	triangular position
		t ¢ g -rib	4	적립	4	accumulation
3	kannon	kay-ron	5	강론	8	sermon
		kag-ron	6	각론	4	detailed exposition
4	kud3innan	ku-tfig-nan	7	구직난	2	unemployment problem
		ku-tJig-ran	8	구직란	2	unknown
5	kj^ŋni	kj^』-ri	9	경리	14	unknown
		kjıg-ri	10	격리	37	quarantine
6	pennjın	$\mathrm{peg}-\mathrm{rj} \wedge \mathrm{n}$	11	백련	15	white lotus
		$\mathrm{p} \varepsilon \mathrm{g}-\mathrm{nj} \wedge \mathrm{n}$	12	백년	5	century

7	pjınnjık'	$\operatorname{pj} \Lambda \eta-\mathrm{rj} \lambda \mathrm{g}$	13	병력	90	replacement depot
		рj $\lambda \mathrm{g}-\mathrm{rj} \lambda \mathrm{g}$	14	벽력	4	thunder and lightning
8	jannjık'	jaŋ-rjıg	16	양력	26	$\begin{gathered} \text { solar } \\ \text { calender } \end{gathered}$
		jag-rj^g	16	약력	3	vita
6 actual sets (2 due to spelling errors); 12 words; 520 tokens						

- Out of $1,234,323$ tokens there are 520 homophonous tokens due to liquid nasalization
- This is a very low level of homophony
(D) Nasal assimilation induces very little homophony
- Stops nasalize before nasals: $\mathbf{p}+\mathbf{N} \rightarrow \mathbf{m N}, \mathbf{t}+\mathbf{N} \rightarrow \mathbf{n N}, \mathbf{k}+\mathbf{N} \rightarrow \mathbf{\eta} \mathbf{N}$

Word-internal nasal assimilation induces very little homophony

- Regarding word internal nasal sequences, 559 are derived consequence of nasal assimilation: 46 nouns possess $\mathbf{m}+\mathrm{m}, 102 \mathrm{n}+\mathrm{m}, 271 \mathrm{n}+\mathrm{m}, 18 \mathrm{~m}+\mathrm{n}, 47 \mathrm{n}+\mathrm{ni}$, and $75 \mathrm{n}+\mathrm{n}$.
- There are 1,734 non-derived nasal+nasal sequences: $127 \mathrm{~m}+\mathrm{m}, 473 \mathrm{n}+\mathrm{m}, 459 \mathrm{~g}+\mathrm{m}$, $97 \mathbf{m}+\mathbf{n}, 184 \mathbf{n}+\mathbf{n}$, and $394 \mathbf{n}+\mathbf{n}$. In all then, there are 2,293 nasal-nasal sequences in the set of 34,803 nouns.
(11) Number of nouns subject to nasal assimilation neutralization

sequence	Non-derived	Derived	Homophonic sets
$\mathbf{m}+\mathbf{m}$	127	46	0
$\mathbf{n}+\mathbf{m}$	437	102	2
$\mathbf{y}+\mathbf{m}$	459	271	6
$\mathbf{m}+\mathbf{n}$	97	18	0
$\mathbf{n}+\mathbf{n}$	184	47	0
$\mathbf{y}+\mathbf{n}$	394	75	2
Totals:	1,734	559	10
2,293 nasal-nasal sequences in the set of 34,803 nouns			
10 homophonic sets			

(12) Homophonic noun sets due to word-internal nasal assimilation

Set number	Homophonous words	Non-neutralized allomorphs	Word number	Hangul	Token count	Gloss
1	tJanmok ${ }^{\prime}$	t 5 ag-mog	1	작목	7	poor night vision
		t 5 an-mog	2	장목	3	lumber
2	t angmul	t ag-mul	3	작물	35	crops
		tfay-mul	4	장물	14	loot
3	t anmun	t \int ag-mun	5	작문	24	composition

		tfay-mun	6	장문	5	wide-open gate
4	t \int annj ${ }^{\text {n }}$	t \int ag-njın	7	작년	267	yesteryear
		t \int aŋ-nj^n	8	장년	8	prime of life
5	t $\int^{\text {hanmul }}$	t ${ }^{\text {hanan}}$-mul	9	찬물	26	cold water
		t ${ }^{\text {hasas-mul }}$	10	찻물	2	tea
6	haymun	hag-mun	11	학문	234	scholarship
		haj-mun	12	항문	9	anus
7	konmul	kog-mul	13	곡물	20	corn
		koy-mul	14	공물	3	tribute
8	kud3innan*	ku-tfig-nan	15	구직난	2	unemployment problem
		ku-tfig-ran	16	구직란	2	unknown
9	kunmak ${ }^{\prime}$	kun-mag	17	군막	3	military tent
		kus-mag	18	굿막	3	miners' hut
10	orenman	o-ren-man	19	오랜만	116	unknown
		o-res-man	20	오랫만	8	unknown
11	peŋnjın	peg-rj^n	21	백련	15	white lotus
		$\mathrm{p} \varepsilon \mathrm{g}-\mathrm{nj} \wedge \mathrm{n}$	22	백년	5	century
12	pıniamu	pıd3-na-mu	23	벚나무	5	cherry tree
		pıs-na-mu	24	벗나무	2	unknown
13	sıŋŋmul	say-mul	25	성물	17	unknown
		sıg-mul	26	석물	5	stone figures
14	janmul	jag-mul	27	약물	42	medicinal waters
		jay-mul	28	양물	7	penis

10 actual sets (4 due to spelling errors); 20 words; 732 tokens.
*non-unique-already listed with lateral nasalization

- In all, there are ten homophonic sets out of 2,293 neutralized nouns in the list of 34,803 nouns (732 out of $1,234,323$ tokens), and four probable spelling errors.
- Out of $1,234,323$ tokens there are 732 homophonous tokens due to word-internal nasal assimilation
- This is a very low level of homophony

Cross-word boundary nasal assimilation induces very little homophony

- Hwang (2008) investigates the amount of potential noun homophony due to the word boundary process.
- 51% of all nouns $(17,763$ out of 34,803$)$ are potentially subject to neutralizing nasal assimilation ($\mathbf{P}=$ labial obstruent, $\mathbf{T}=$ coronal obstruent, $\mathbf{K}=$ dorsal obstruent).

UCSC
17 April 2009
Dan Silverman
(13) Potential word-final nasal-assimilated nouns

Labials			Coronals			Dorsals			
Value	Number of words	$\%$ of total	Value	Number of words	$\%$ of total	Value	Number of words	$\%$ of total	
$\mathbf{m \#}$	1,913	5.3	$\mathbf{n \#}$	5,477	15.3	$\mathbf{\eta \#}$	5,074	14.15	
$\mathbf{P \#}$	1,343	3	$\mathbf{T} \#$	407	1	K\#	3,549	10	
Total:	3,256	8.7	Total:	5,884	16.4	Total:	8,623	23.9	
17,763 out of 34,803 nouns; 51% of all nouns									

- Despite the enormous amount of potential neutralization here, Hwang shows that a mere 2.8% of the noun inventory is potentially subject to derived homophony as a consequence of nasal neutralization.
(14) Potential word-final nasal-assimilated homophones

Labials			Coronals			Dorsals		
Value	Number of words	$\%$ of total	Value	Number of words	$\%$ of total	Value	Number of words	$\%$ of total
$\mathbf{m \#}$	87	.2	$\mathbf{n} \#$	44	0.1	$\mathbf{\eta \#}$	354	1.0
P\#	89	.2	T\#	59	0.1	K\#	355	1.0
Total:	176	.4	Total:	103	0.25	Total:	709	2.0
988 words out of 34,803 nouns; 2.8% of all nouns								

- Any noun that might be subject to derived homophony as a consequence of nasal assimilation must be immediately followed by a nasal in the next word. This being the case, the amount of actual homophony is likely to be extremely low indeed.
- To get a sense of this value, there are 3,404 nouns in the corpus that are nasal-initial. Assuming this is representative of the language as a whole, this constitutes about 10% of the lexicon.
- This suggests that the likelihood of derived homophony is likely to be one-tenth of 2.8%, or . 28%.
- This result is in full keeping with the remarkably low levels of derived homophony found elsewhere.

(E) Coronal assibilation induces very little homophony

- Coronal obstruents assibilate before \mathbf{s} and \mathbf{s}^{\prime}, resulting in (neutralized) s' (Martin 1992).
- Out of the 34,803 nouns in the corpus, 131 words possess the relevant value: 41 lexical, 90 derived. There is a total of one homophonic set as a result of this alternation.
(F) Homophonic noun set due to coronal assibilation

Set number	Homophonous words	Non-neutralized allomorphs	Word number	Hangul	Token count	Gloss
1	pis'al	pitf -sal	1	빛살	12	light ray
		2	빗	2	comb teeth	
1 set; 2 words; 14 tokens						

- Out of $1,234,323$ tokens there are 14 homophonous tokens due to coronal assibilation
- This is a very low level of homophony
(F) Cluster reinforcement induces no homophony
- When a non-aspirated obstruent comes to follow another obstruent, the second value tenses (Kim-Renaud 1975, Martin 1992).
- There are 4,048 nouns in the corpus that possess word-medial tensed obstruents: $449 \mathbf{p}$ ', $476 \mathbf{t}^{\prime}, 1017$ t t', $1090 \mathbf{s}^{\prime}$, and 1016 k'.
- All three sets of derived homophones are false positives.
(G)Homophonic noun sets due to cluster reinforcement

Set number	Homophonous words	Non-neutralized allomorphs	Word number	Hangul	Token count	Gloss
1	t ${ }^{\prime}$ 'ak'up	tf'ag-k'ug	1	짝꿍	3	buddy
		t ${ }^{\text {'ag-kup }}$	2	짝궁	2	unknown
2	k'akt'ugi	k'ag-tu-ki	3	깍두기	7	radish kimchi
		k'ag-t'u-ki	4	깍뚜기	4	unknown
3	kop' \quad gi	kob-p ε-ki	5	곱배기	3	unknown
		kob-p' ε-ki	6	곱빼기	3	double shot
no actual set (all due to spelling errors); 0 words; 0 tokens						

- Out of $1,234,323$ tokens there are no homophonous tokens due to cluster reinforcement
- This is a very low level of homophony
(G)Variable assimilation might induce more homophony (but might not...)
- In colloquial Korean speech, coronals (excluding the lateral) variably assimilate to a following consonant (Kim-Renaud 1975, Martin 1992), and labials variably assimilate to a following dorsal.
- This assimilation process has the potential to induce a non-negligible amount of homophony.
(16) Potential homophony due to variable assimilation

a. Variable value	Number of nouns	b. Non-variable value	Number of nouns	c. Number of potentially homophonic sets
$\mathbf{t}+\mathbf{P} \sim \mathrm{p}+\mathbf{P}$	126	p+P	92	No sets
$\mathrm{n}+\mathbf{P} \sim \mathrm{m}+\mathbf{P}$	683	$\mathrm{m}+\mathbf{P}$	385	15 sets
$\mathbf{n}+\mathbf{m} \sim \mathbf{m}+\mathrm{m}$	575	$\mathrm{m}+\mathrm{m}$	173	No sets
$\mathbf{t}+\mathbf{K} \sim \mathbf{k}+\mathbf{K}$	171	k+K	688	14 sets
p+K ~ $\mathrm{k}+\mathrm{K}$	177			
$\mathbf{n}+\mathbf{K} \sim \mathbf{y}+\mathbf{K}$	1217	y+K	1,324	62 sets
$\mathbf{m}+\mathrm{K} \sim \mathrm{\eta}+\mathrm{K}$	249			

- This is a variable pattern of neutralization: sometimes neutralization occurs (more often in casual speech), and sometimes it doesn't (more often in formal speech).
- Jun (1995):gestural reduction of labials (in $\mathbf{p}+\mathrm{k}$ sequences) occurs about 35% of the time in casual speech, and about 15% of the time in formal speech. (See also Willis 2009)
- This variable pattern does not vary between discrete values $\mathbf{k} \mathbf{v e r s u s ~} \mathbf{p k}$. Rather the variation is gradient, such that tokens may, in theory, fall anywhere on the phonetic continuum between these two endpoints.
- This sort of variation sets up a situation in which near-neutralizations are practically inevitable: some speech tokens are nearly-but, crucially, not completely-neutralized, and so contrasts may remain recoverable despite the near-obliteration of their acoustic distinctiveness (for example, Dinnsen \& Charles-Luce 1984, and Charles-Luce 1985 on Catalan, Port \& O’Dell 1985, Charles-Luce 1985, Port \& Crawford 1989 on German, Slowiaczek \& Dinnsen 1985 on Polish, Pye 1986 on Russian, Warner, Jongman, Sereno, and Kemps 2004 on Dutch, Bishop 2007 on Andalusian Spanish).
- Charles-Luce (1985): potential homophones in Catalan are more likely to remain acoustically distinct from each other in semantically ambiguous contexts, in comparison to both homophones in semantically transparent contexts, and to neutralized heterophones. Comparable findings are reported for Dutch (Warner, Jongman, Sereno, and Kemps 2004).
- Anecdotally, an informal, non-systematic dictionary investigation of potentially homophonic sets due to variable coronal assimilation (approximately forty-five minutes checking an online dictionary 'Babylon Korean Dictionary', http://www.babylon.com/dictionary/1271/Babylon-Korean-English.html) yielded only a few false-positives for words with optionally assimilated sequences.
- Were these sequences genuinely neutralized, we might expect a higher number of false positives: completely neutralized forms are more likely subject to spelling errors
- The documented spelling errors in the Sejong Corpus are not random, but instead, always reflect accurate pronunciations of the (presumably intended) word.
(17) Summary of neutralizing alternations and derived homophony

Alternation	Number of nouns, both lexical and derived (out of 34,803)	Number of homophonic sets	Number of homophonic tokens (out of 1,234,323)
(A) Aplosivization	10,138	15	$6,117(46,781-40,664$)
(B) Nasal lateralization	1,001	10	288
(C) Liquid nasalization	695	6	520
(D) Nasal assimilation	7,592	10	732
(E) Coronal assibilation	131	1	14

(F) Cluster reinforcement	4,048	0	0
(G) Variable assimilation	$(5,680)$	(91)	(undetermined)
Totals:	13,258	42	7,671

- In running Korean speech, out of 1,234,323 noun tokens encountered, chances are that about 7,671 will be homophonous.
- This is a very low level of homophony
"A very low level of homophony" compared to what?
- Totals such as those presented here acquire greater significance when they are compared to values that are not eligible for derived homophony (Surendran \& Niyogi 2006).

True word-final aplosivization vs. would-be word-initial laryngeal neutralization

- Word-initial values provide a relevant comparison to word-final values, because the set of contrastive values allowed root-initially is very similar to (though larger than) the set of values allowed root-finally, and is, of course, not subject to aplosivization.
(18) Would-be homophonic sets due to word-initial laryngeal neutralization versus actual homophonic sets due to word-final aplosivization

Labials		Coronals		Dorsals	
(Would-be) Word-initial	(True) Word-final	(Would-be) Word-initial	(True) Word-final	(Would-be) Word-initial	(True)
4,323 word-final	1,202 words	15,988 words	408 words	5,814 words	3,524 words
100 sets	4 sets	1,755 sets	10 sets	57 sets	1 set

1,912 sets of would-be word-initial homophonic sets due to laryngeal neutralization vs. 15 true homophonic true sets due to aplosivization

True stop+nasal assimilation vs. would-be nasal+stop assimilation

(19) Stop+nasal word-internal nasal assimilation versus would-be nasal+stop wordinternal nasal assimilation

sequence	(Would-be) N+N sequences derived from nasal+stop sequences	(True) $\mathrm{N}+\mathrm{N}$ sequences derived stop+nasal sequences	(True) Lexical N+N sequences
$\mathbf{m + m}$	512	46	127
$\mathbf{n}+\mathbf{m}$	1179	102	473
$\mathbf{y}+\mathbf{m}$	1236	271	459
$\mathbf{m}+\mathbf{n}$	911	18	97
$\mathbf{n}+\mathbf{n}$	3333	47	184
$\mathbf{y}+\mathbf{n}$	4571	75	394
$\mathbf{m}+\mathbf{y}$	249	--	--
$\mathbf{n}+\mathbf{\eta}$	1238	--	--

$\boldsymbol{\eta}+\mathbf{\eta}$	1327	--	--
1100 would-be homophonic sets due to nasal-stop assimilation			
$(1072$ without $+\boldsymbol{\eta})$ vs. 10 true sets due to stop-nasal assimilation			

Speculation: whence Korean neutralization?

- Korean has witnessed a massive influx of Chinese words in its distant past-beginning at least 1300 hundred years ago, with the greatest amount of borrowing during the Kolye Dynasty, about 1000 to 600 years ago-which served to supplant a significant portion of its native vocabulary, particularly its noun inventory.
- The augmentation of the Korean lexicon (due to contact with Chinese) induced phonotactic changes culminating in massive neutralization.
- Now, the phonotactic regularities seem to be inducing further lexical augmentation, setting up a "diachronic do-se-do" between the lexicon and the phonotactics.
- The simplification of root-final obstruent values continues into the present day:
- Whereas past neutralizing values have primarily been among non-prevocalic alternants, in present-day Korean there are additional neutralizations among prevocalic root-final values.
- Jun (2007): among the coronals, \mathbf{s} is the favored variant; among the labials ($\mathbf{b}, \mathbf{p}^{\mathbf{h}}$), \mathbf{b} is the favored variant; among the dorsals ($\mathbf{g}, \mathbf{k}^{\mathrm{h}}, \mathrm{k}^{\prime}$), g is the favored variant.
- These favored variants are also the most frequent in terms of the number of words that possess them,
- Jun: the token prevalence of some variants over others may be a consequence of the lexical prevalence of some values over others (See also Kim 2001, Ito 2006, Kang 2006, and Albright 2008 on this topic).
- The inventory of root-final values in Korean seems to be in a rather constant-if slow-going-state of attrition.
- The slow-going attrition of the Korean system of root-final values may have been set in motion by the influx of Sino-Korean forms.
(20) Diachrony of Korean root endings

Contemporary Korean consonantal root endings, lexically prevocalic (bold cells vary; bold values are preferred variants; tensed values arose from a collapse of "overstuffed" root endings):

b	$\mathrm{p}^{\text {h }}$	d	$\mathrm{t}^{\text {b }}$	d3	t ${ }^{\text {h }}$	S	s'	(h)	g	$\mathbf{k}^{\text {h }}$	k'	
Contemporary Korean consonantal root endings, lexically non-prevocalic:												
		t^{\prime}								k^{\prime}		Root-final values merge

- The attrition of root-final values was offset by the compounding nature of the SinoKorean vocabulary. Two heads are better than one: compounding greatly increased the opportunity for nouns to contrast with each other.
- Proposal: the number of root-final values undergoing both neutralization and merger increased exactly because of the compounding that was introduced by the Sino-Korean vocabulary, which offset any counter-functional developments.

Final remarks

- The low level of homophony in Korean becomes especially obvious by comparing actual homophonic sets to would-be homophonic sets.
- Anti-homophony seems to be a genuine pressure acting on the Korean sound system.
- Even when there is a natural phonetic tendency toward a particular phonetic state, say non-prevocalic aplosivization among obstruents, a given language will most likely not evolve toward that state if excessive homophony were to result, for the very speech tokens that are produced with homophone-inducing aplosives are also the very speech tokens that would likely confuse listeners.
- As a natural, passive consequence, such tokens would not be reproduced as these listeners become speakers.
- There is likely to be a natural, passive maintenance of contrast - either through the maintenance of plosivization or by some other means-for it is exactly those speech tokens that are communicated successfully to listeners that are more likely to take hold, and become conventionalized as the speech norm.
- Successful speech variants, like successful mutations, are naturally selected.

> It is not the desire to be understood, but rather the consequence of misunderstanding that influences language change. This mechanism implies a mismatch between producer and interpreter: the type of built-in instability that we would expect to find behind long-term shifts in language behavior. -William Labov (1994:586)

References
Albright, Adam. 2008. Explaining universal tendencies and language particulars in analogical change. In Jeff Good (ed.), Linguistic Universals and Language Change. Oxford University Press.
Bishop, Jason. 2007. Incomplete Neutralization in Eastern Andalusian Spanish: Perceptual Consequences of Durational Differences Involved in S-Aspiration. Proceedings of the International Congress of Phonetic Sciences XVI. 1765-1768.
Bladon, Anthony. 1986. Phonetics for Hearers. In G. McGregor, ed., Language for Hearers. Oxford: Pergamon Press, 1-24.
de Boer, Bart. 2001. The origins of vowel systems, Oxford: Oxford University Press
Casenhiser, Devin M. 2005. Children's resistance to homonymy: An experimental study of pseudohomonyms. Journal of Child Language 32, 319-343.
Charles-Luce, Jan. 1985. Word-final devoicing in German: Effects of phonetic and sentential contexts. Journal of Phonetics 13, 309-324. Charles-Luce, Jan. 1993. The effects of semantic context on voicing neutralization. Phonetica 50, 28-43.
Davis, Stuart, \& Seung-Hoon Shin. 1999. The syllable contact constraint in Korean: an optimality-theoretic analysis. Journal of East Asian Linguistics 8, 285-312.
Dinnsen, Daniel. 1985. A re-examination of phonological neutralization. Journal of Linguistics, 21, 265-279.
Dinnsen, Daniel, \& J. Charles-Luce, J. 1984. Phonological neutralization, phonetic implementation and individual differences. Journal of Phonetics 12, 49-60.
Cho Seung-Bog. 1967. A Phonological Study of Korean. Uppsala: Almqvist and Wiksells.
Flemming, Edward. 1995. Auditory Representations in Phonology. Ph.D. dissertation, UCLA, published 2002, in Outstanding Dissertations in Linguistics series. New Y ork: Routledge.
Hockett, Charles F. 1955. A Manual of Phonology. Indiana University Publications in Anthropology and Linguistics 11.
Hockett, Charles F. 1967. The quantification of functional load. Word 23, 320-339.
van der Hulst, Harry \& Jeroen van der Weijer. 1991. Topics in Turkish phonology. In H. Boeschoten \& L. Verhoeven (eds.) Turkish Linguistics Today. Leiden: Brill. 11-59.
Hwang, Jennifer. 2008. Neutralizing nasalization in Korean. unpublished manuscript, San José State University.
Ito Chiyuki. 2006. Coronal Coda Distribution in Korean Nouns. unpublished manuscript, Tokyo University of Foreign Studies, ILCAA.
Jun Jongho 1995 A Constraint Based Analysis of Place Assimilation Typology, Ph.D. Dissertation, UCLA.

Jun Jongho. 2007. Variation in Korean stem-final obstruents. unpublished manuscript, SNU.
Kang Yoonjung. 2006. Neutralizations and variations in Korean verbal paradigms. In Susumu Kuno et al. eds., Harvard Studies in Korean Linguistics XI.
Kim Hyunsoon. 2001. A phonetically based account of phonological stop assibilation. Phonology 18, 81-108.
Kim, Hyunsoon, \& Allard Jongman. 1996. Acoustic and perceptual evidence for complete neutralization of manner of articulation in Korean. Journal of Phonetics 24, 295-312.
Kim-Renaud, Young-Key 1975. Korean Consonantal Phonology. Tower Press.
King, Robert. 1967. Functional Load and Sound Change. Language, 43, 831.852.
Kingston, John. 1985. The Phonetics and Phonology of the Timing of Oral and Glottal Events. Ph.D. dissertation, University of California at Berkeley.
Kingston, John. 1990. Articulatory Binding. In John Kingston \& Mary E. Beckman, eds., Between the Grammar and Physics of Speech--Papers in Laboratory Phonology I. Cambridge University Press, 406-434.
Lee Iksop, \& S. Robert Ramsey, 2000. The Korean Language. Cambridge: Cambridge University Press.
Labov William. 1994. Principles of Linguistic Change: Internal Factors. Oxford, Blackwell.
Lee June-Yub. 1994. Hangul Code Conversion Program 2.1. (http: //ftp.kaist.ac.kr/hangul/code/ hcode/).
Lindblom, Bjorn, Peter MacNeilage, \& Michael Studdert-Kennedy. 1984. Self-organizing processes and the explanation of language universals. In Brian Butterworth, Bernard Comrie, \& Osten Dahl, eds., Explanations for Language Universals, Walter de Gruyter and Co., 181203.

Lombardi, Linda. 1991. Laryngeal Features and Laryngeal Neutralization, Ph.D. dissertation, U.Mass Amherst, published 1994, in Outstanding Dissertations in Linguistics series. New York: Garland.
Martin, Samuel E. 1992. A Reference Grammar of Korean. Rutland, VT: Charles E, Tuttle Company.
Martin, Samuel E. 1997. How did Korean get $-l$ for Middle Chinese words ending in -t? Journal of East Asian Linguistics 6, 262-171.
Martinet, Andre. 1952. Function, structure, and sound change. Word 8.2, 1-32.
Ohala, John J. 1981. The listener as a source of sound change. In Carrie S. Masek, Roberta A. Hendrick, \& Mary Frances Miller, eds., Papers from the Parasession on Language and Behavior, Chicago Linguistics Society, 178-203.
Port, Robert, \& Penny Crawford. 1989. Incomplete neutralization and pragmatics in German. Journal of Phonetics 17, 257-282.
Port, Robert, \& Michael L. O’Dell. 1985. Neutralization of syllable-final voicing in German Journal of Phonetics 13, 455-471.
Pye, S. 1986. Word-final devoicing of obstruents in Russian. Cambridge Papers in Phonetics and Experimental Linguistics 5, 1-10.
Silverman, Daniel. 1995. Phasing and Recoverability. Ph.D. dissertation, UCLA, published 1997, in Outstanding Dissertations in Linguistics series. New York: Garland.
Silverman, Daniel. 1996. Phonology at the interface of morphology and phonetics: root-final laryngeals in Chong, Korean, and Sanskrit. Journal of East Asian Linguistics 5, 301-322.
Silverman, Daniel. 2006. A Critical Introduction to Phonology: of Sound, Mind, and Body. London/New York: Continuum Books.
Silverman, Daniel, \& Jongho Jun.1994. Aerodynamic evidence for articulatory overlap in Korean. Phonetica 51, 210-220.
Slowiaczek, Louisa M., \& Daniel Dinnsen. 1985. On the neutralizing status of Polish word-final devoicing. Journal of Phonetics 13, 325-341.
Sohn Ho-Minh. 1999. The Korean Language. Cambridge: Cambridge University Press.
Song Jae Jung. 2005. The Korean Language: structure, use and context. New York: Routledge.
Steriade, Donca. 1995. Positional Neutralization. unpublished manuscript, UCLA.
Steriade, Donca. 1997 Phonetics in phonology: the case of laryngeal neutralization. unpublished manuscript, UCLA.
Steriade, Donca. 2000 Directional asymmetries in place assimilation: a perceptual account. in Elizabeth Hume \& Keith Johnson, eds., Perception in Phonology, Academic Press.
Surendran Dinoj \& Partha Niyogi. 2003. Measuring the usefulness (functional load) of phonological contrasts. Technical Report TR-2003-12, Department of Computer Science, University of Chicago.
Surendran Dinoj, \& Partha Niyogi. 2006. Quantifying the functional load of phonemic oppositions, distinctive features, and suprasegmentals. In Ole Nedergaard Thomsen, ed., Competing Models of Linguistic Change: Evolution and Beyond. Amsterdam and Philadelphia: John Benjamins.
Trubetskoy, Nikolai S. 1939 [1969]. Principles of Phonology. Berkeley/Los Angeles: University of California Press.
Warner, Natasha, Allard Jongman, Joan Sereno, \& Rachel Kemps. 2004. Incomplete neutralization and other sub-phonemic differences in production and perception: evidence from Dutch. Journal of Phonetics 32, 251-276.
Wedel, Andrew. 2006. Exemplar models, evolution and language change. The Linguistic Review 23, 247-274.
Wright, Richard. 2004. A Review of Perceptual Cues and Cue Robustness. In Bruce Hayes, Robert Kirchner, \& Donca Steriade (eds.), Phonetically Based Phonology. Cambridge, UK: Cambridge University Press.

